Entradas más populares de este blog
Circunferencia
A la circunferencia la podemos definir de la siguiente forma: Es aquél lugar geométrico que describe un punto que se mueve en el plano de tal forma que su distancia a un punto fijo llamado centro, es siempre constante. Dicha curva plana y cerrada la podemos encontrar de forma geométrica de la siguiente forma: circunferencia con centro en el origen Si el centro está en el origen de coordenadas del plano cartesiano, entonces una circunferencia de radio r se puede representar algebraicamente mediante la ecuación . Ejercicio: Determinar la ecuación de la circunferencia de centro en el origen cartesiano y de radio 5. Resultado: circunferencia con centro fuera del origen en el caso de la ecuación fuera del origen, utilizaremos la forma ordinaria. Qué podemos apreciar en la siguiente fórmula: Ejercicio: Determinar la ecuación de la circunferencia cuyo centro es el punto C (5, -3) y su radio es de √19 h = 5 k = -3 r = √19 ecuación ordinaria Resultad...
Paralelismo
Dos rectas son paralelas si sus vectores directores son paralelos , es decir, si éstos son linealmente dependientes . Dos rectas son paralelas si tienen sus pendientes o vectores directores iguales . Dos rectas son paralelas si los coeficientes de x e y respectivos son proporcionales . Dos rectas son paralelas si forman un ángulo de 0º . Ejercicio: Aplicaciones en la vida diaria: -las vías del tren son paralelas para que los trenes se puedan desplazar facilmente mediante sus mecanismos -carreteras los extremos de las carreteras o pues de todas las calles son paralelas y también la línea amarilla que muchas carreteras tienen es paralela a los extremos de la carretera para dividir las vías por donde los autos pasan
Comentarios
Publicar un comentario